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An approximate solution is obtained for the problem of the temperature field of a short tube with internal
heat sources in the steady-state thermal regime.

The problem of the temperature field of an electrical coil of cylindrical shape may be regarded, in idealized
form, as the problem of a short tube with internal heat sources.

The temperature field of a tube of finite length with internal heat sources is described by the differential
equation
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We find the solution of this equation in the form of a sum of two functions [1], each of which depends only on a
single variable, i.e., in the form

Ly =F )+ P (2)
Finding the cor_responding partial derivatives for (2) and substituting into (1), we obtain
vt 1 !’ v qU
F(f)+7F(f)=-—¢(y)+T . (3)

Equation (3) must be satisfied at all values of r and y, which is possible only if both sides are equal to a
constant quantity, which we denote by (—-qv/}\s), where each of the quantities, including e, is also constant. Then,
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The integrals of these equations have the form
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where Cy, C,, Cj, Cy, the coefficients of integration, are constant if the conditions of uniqueness attached to this
solution are independent of the variables r and y.
In this case, solution (2) is written in the form
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The constant ¢ can be found after determining the coefficients of integration by applying (6) and (7) tfo the same
fixed point of the tube.
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Fig. 1. Assignment of boundary conditions.

The coefficients of integration Cy, Cy, C4, and C, can be found from the conditions of uniqueness, which we
formulate for a finite tube in several variants, these conditions being in each case independent of the variables r and
y.

I. Cooling under boundary conditions of the third kind from the outer surface and the ends, no heat transfer at
the inner surface (Fig. 1) ; in this case,

ot
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—2 62; = Goltr, v)m —tal- (12)

II. Cooling under boundary conditions of the third kind from the inner surface and the ends, no heat transfer at
the outer surface; in this case
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ITI. Cooling under boundary conditions of the third kind from the outer surface, the inner surface and the ends:

in this case,
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In all three cases, the symmetry of the problem with respect to the y-coordinate is expressed by the same
derivative (9), (9'), and (9").
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In all cases, the boundary conditions are approximate, in that the heat transfer at the surface is expressed in
terms of the difference between the mean t of the surface and the surrounding medium.

Let us examine the determination of the coefficients Cy, Cy, C;, and C, for case L

Using conditions (9) and (10), we determine

2
C,= ‘72'3’;1 and C; =0,
and solution (8) takes the form
qv f2 2 2
t,,yza—e- —-5——|—R1 Inr—@E—1)y*|+C,+Cs (14)

There is also another possibility of determining g, C,, and C;. K we substitute D = Cy + Cy, write (14) in the
form

2
t, = _2‘;_8_ [_ ’T + Rilnr —(e —1) yz] +D (15)

and do not pose the problem of separate determination of Cy and C4, then only the two constants ¢ and D will be subject
to determination; this eliminates the possibility of using (6) and (7) for determining g, but the boundary conditions
(11) and (12) are sufficient for determining both of the constants ¢ and D.

We determined the values of ¢ and D from conditions (11) and (12), for which the derivatives and mean
temperatures were found using (15). In particular,
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Having thus solved Egs. (11) and (12) for ¢ and D, we obtain
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Substituting (17) into (15), we have

[ i 2 A R
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3 tegm Pt

(18)

Then, Eq, (18), for which the value of ¢ is determined from (16), is the solution of the problem.
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We have borrowed certain details of our approach to the solution of the problem from [3], which is concerned with
the question of the temperature field of a cylinder of finite length with internal heat sources.

Similarly, for conditions (97, (10", (11'), and (12") we obtained a solution in the form

a I 2 A 2 2)
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Finally, for conditions (9"), (10", (11™), (12"), and (13) the solution fakes the form
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The solutions obtained satisfy the differential equation {1) and the corresponding equations of uniqueness (9),
(10), (11), (12); (9", (107, (117, (127; (9™, (10M), (11™), (12", (13).

At Y = o, the solutions go over into the equations of the temperature field of an infinite tube with internal heat
sources [2].

At Ry = = the solution go over into the equations of the temperature field of an infinite plate with internal heat
sources [2].

Thus, at Y = © or R, = = the solutions are exact. This is perfectly legitimate, since the mean surface
temperatures entering into the boundary conditions then become the true temperatures, and the boundary conditions
themselves become not approximate, but exact.

At finite values of Y and R, the solutions are approximate owing to the simplification of the boundary conditions
and the consequent approximation of the constants ¢ and D and C; and Cj.

At o; = 0 Eqs. (19) and (20) go over into the solution for an infinite plate, at o = 0 into the solution for an
infinite tube cooled only over the inner surface.

Equations (21), (22), and (23) are the most general solution and at o; = 0 go over to Eq. (18) and (16); at oy =0

they are transformed into Eqs. (19) and (20); at @; = 0 and &y = 0 they become the solution for an infinite plate; at
a; = 0 and ag = 0 they are transformed into the solution for a finite tube cooled only over the outer surface; at g =0

863



JOURNAL OF ENGINEERING PHYSICS

and ¢, = 0 they go, over to the solution for an infinite tube cooled only over the inner surface; and at @ = 0 they
become the solution for an infinite tube cooled at the outer and inner surfaces.

The suitability of the method was tested on several examples for the most general case—a short tube with
internal heat sources and simultaneous cooling of the inner, outer, and end surfaces. The starting data are given in
Table 1, and the results are compared in Fig. 2.

Table 1. Starting Data for the Examples (qy = 10°
W/m?, A =0.4 W/m-deg, a= 2 -10"7 m*/sec)

Tube dimensions in mm Heat transfer
coefficients,
@ | o | ¢ \ W/m? - deg
R,y 5 5 5 a;=5
Ry 17 15 9 ao=20
2y 32 4 32 2e==16

(=10 W/m?® A=04 W/m-deg, a=2-:10"7 m?/sec)

The temperature fields for all the examples were calculated from (23), (22), and (21) on a "Supermetall” electric
calculating machine, and by the method of elementary balances using a Minsk-1 computer.
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Fig. 2. Comparison of calculations based on Egs.
(23), (22), and (21) and computer calculations based
on the method of elementary balances: I) computer
calculation; II) calculations based on the formulas;
1 and 2) example a ty=9 and tyzy; 3 and 4) example
b ty:O and tyzy; 5 and 6) neé(ample c tRz and tRI; t in

The similar character of the temperature curves obtained from equations (23), (22), (21) and by the method of
elementary balances is apparent from Fig. 2. The radii ry, at which the temperature maximum in the radial direction
is established, coincide. The greatest errors are observed at the junctions of the ends and the cylindrical surfaces,
which is quite natural in view of the simplified boundary conditions. Table 2 presents the errors ¢ (%) of the
calculations based on (23), (22), and (21) for the characteristic points 1, 2, 3, and 4 (Fig. 1, III) relative to the
method of elementary balances, whose errors for examples a and b were taken into account using the Runge formula
[4] (the calculations were made for networks with steps 2h and h). In example ¢, the error was computed without
allowance for the advantages that can be obtained in these calculations by refining the network,

Table 2. Calculation Errors

Example a b c

No. of

potnts 1 2 3 4 1 2 3 4 L] e

i

I
L
i :
3, % |—1.05{—4.7|—0.25—0.12] —4.3}—5.1|—4.2]|—4.8 —5.4'—6.0{—3.4 3.0

As may be seen from the table, the accuracy of the solution is satisfactory. It should be noted that, in these
problems, when the boundary conditions of the third kind are strictly formulated, the coefficients of integration
obviously depend only slightly on the variables r and y and, therefore, are not seriously affected by adopting
approximate boundary conditions.
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The relative simplicity, generality and satisfactory accuracy of the solution make it possible to recommend it
for calculating the temperature regimes of electrical coils. It is desirable to take into account the effect of the coil
frame as a factor affecting @y, @y, and og; however, the question of the distribution of the total power of the coil
between the inner and outer cylindrical and end surfaces (i.e., the question of the magnitude of @, ¢, and ag) is not
considered in this study.

NOTATION

tr,y is the temperature at point with coordinates r and y; r and vy are variable coordinates in the cylindrical
system; Ry, Ry, and 2Y are the inner and outer radii and the length of the tube, respectively; g is the power of
the internal heat sources, uniform over the volume; A is the thermal conductivity of the tube material (does not depend
on temperature); o, «; and oy are the coefficients of heat transfer from the outer and inner cylindrical surfaces and
the ends of tube; ty is the temperature of surrounding medium.
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